Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

OP279 Datasheet(PDF) 8 Page - Analog Devices

No. de pieza OP279
Descripción Electrónicos  Rail-to-Rail High Output Current Operational Amplifiers
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  AD [Analog Devices]
Página de inicio  http://www.analog.com
Logo AD - Analog Devices

OP279 Datasheet(HTML) 8 Page - Analog Devices

Back Button OP279_15 Datasheet HTML 4Page - Analog Devices OP279_15 Datasheet HTML 5Page - Analog Devices OP279_15 Datasheet HTML 6Page - Analog Devices OP279_15 Datasheet HTML 7Page - Analog Devices OP279_15 Datasheet HTML 8Page - Analog Devices OP279_15 Datasheet HTML 9Page - Analog Devices OP279_15 Datasheet HTML 10Page - Analog Devices OP279_15 Datasheet HTML 11Page - Analog Devices OP279_15 Datasheet HTML 12Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 16 page
background image
OP179/OP279
–8–
REV. G
7
2
0
0.01
0.100
10
1
5
1
3
4
6
CAPACITIVE LOAD – nF
VS
5V
RL
1k
TA
25 C
Figure 4. OP179/OP279 Bandwidth vs. Capacitive Load
1/2
OP279
RS
20V
CS
1 F
CL
10nF
5V
VIN
100mV p-p
VOUT
Figure 5. Snubber Network Compensates for Capacitive
Load
The first step is to determine the value of the resistor, RS. A
good starting value is 100
Ω (typically, the optimum value will
be less than 100
Ω). This value is reduced until the small-signal
transient response is optimized. Next, CS is determined—10
µF
is a good starting point. This value is reduced to the smallest
value for acceptable performance (typically, 1
µF). For the case
of a 10 nF load capacitor on the OP179/OP279, the optimal
snubber network is a 20
Ω in series with 1 µF. The benefit is
immediately apparent as seen in the scope photo in Figure 6.
The top trace was taken with a 10 nF load and the bottom trace
with the 20
Ω, 1 µF snubber network in place. The amount of
overshot and ringing is dramatically reduced. Table I illustrates a
few sample snubber networks for large load capacitors.
90
100
10nF LOAD
ONLY
SNUBBER
IN CIRCUIT 10
0%
50mV
2 s
Figure 6. Overshoot and Ringing Are Reduced by Adding
a “Snubber” Network in Parallel with the 10 nF Load
Table I. Snubber Networks for Large Capacitive Loads
Load Capacitance (CL)
Snubber Network (RS, CS)
10 nF
20
Ω, 1 µF
100 nF
5
Ω, 10 µF
1
µF0 Ω, 10 µF
Overload Recovery Time
Overload, or overdrive, recovery time of an operational amplifier
is the time required for the output voltage to recover to its linear
region from a saturated condition. This recovery time is impor-
tant in applications where the amplifier must recover after a
large transient event. The circuit in Figure 7 was used to
evaluate the OP179/OP279’s overload recovery time. The
OP179/OP279 takes approximately 1
µs to recover from positive
saturation and approximately 1.2
µs to recover from negative
saturation.
1/2
OP279
RL
499
+5V
VOUT
–5V
R3
10k
R2
1k
R1
909
2V p-p
@ 100Hz
Figure 7. Overload Recovery Time Test Circuit
Output Transient Current Recovery
In many applications, operational amplifiers are used to provide
moderate levels of output current to drive the inputs of ADCs,
small motors, transmission lines and current sources. It is in these
applications that operational amplifiers must recover quickly to
step changes in the load current while maintaining steady-state
load current levels. Because of its high output current capability
and low closed-loop output impedance, the OP179/OP279 is an
excellent choice for these types of applications. For example,
when sourcing or sinking a 25 mA steady-state load current, the
OP179/OP279 exhibits a recovery time of less than 500 ns to
0.1% for a 10 mA (i.e., 25 mA to 35 mA and 35 mA to 25 mA)
step change in load current.
A Precision Negative Voltage Reference
In many data acquisition applications, the need for a precision
negative reference is required. In general, any positive voltage
reference can be converted into a negative voltage reference
through the use of an operational amplifier and a pair of matched
resistors in an inverting configuration. The disadvantage to that
approach is that the largest single source of error in the circuit is
the relative matching of the resistors used.
The circuit illustrated in Figure 8 avoids the need for tightly
matched resistors with the use of an active integrator circuit. In
this circuit, the output of the voltage reference provides the
input drive for the integrator. The integrator, to maintain circuit
equilibrium, adjusts its output to establish the proper relation-
ship between the reference’s VOUT and GND. Thus, various
negative output voltages can be chosen simply by substituting
for the appropriate reference IC (see table). To speed up the


Número de pieza similar - OP279_15

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
OP279GP AD-OP279GP Datasheet
228Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. F
OP279GRU AD-OP279GRU Datasheet
228Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. F
OP279GRU AD-OP279GRU Datasheet
253Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. G
OP279GRU AD-OP279GRU Datasheet
254Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. G
OP279GRU AD-OP279GRU Datasheet
239Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. G
More results

Descripción similar - OP279_15

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
OP179 AD-OP179 Datasheet
228Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. F
OP279GSZ AD-OP279GSZ Datasheet
254Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. G
OP279GS-REEL7 AD-OP279GS-REEL7 Datasheet
239Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. G
OP279GRU-REEL AD-OP279GRU-REEL Datasheet
254Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. G
OP179 AD-OP179_02 Datasheet
253Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
REV. G
OP179 AD-OP179_15 Datasheet
254Kb / 16P
   Rail-to-Rail High Output Current Operational Amplifiers
logo
Unisonic Technologies
LV358 UTC-LV358_17 Datasheet
408Kb / 12P
   RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
logo
STMicroelectronics
TS461 STMICROELECTRONICS-TS461_05 Datasheet
192Kb / 12P
   Output Rail-to-Rail Operational Amplifiers
logo
SG Micro Corp
SGM8931 SGMICRO-SGM8931 Datasheet
365Kb / 16P
   Rail-to-Rail Output Operational Amplifiers
logo
STMicroelectronics
TS464CDT STMICROELECTRONICS-TS464CDT Datasheet
280Kb / 13P
   Output rail-to-rail operational amplifiers
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com