Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

LM2651MTC-2.5 Datasheet(PDF) 9 Page - National Semiconductor (TI)

[Old version datasheet] Texas Instruments acquired National semiconductor.
No. de pieza LM2651MTC-2.5
Descripción Electrónicos  1.5A High Efficiency Synchronous Switching Regulator
Download  10 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  NSC [National Semiconductor (TI)]
Página de inicio  http://www.national.com
Logo NSC - National Semiconductor (TI)

LM2651MTC-2.5 Datasheet(HTML) 9 Page - National Semiconductor (TI)

Back Button LM2651MTC-2.5 Datasheet HTML 2Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 3Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 4Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 5Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 6Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 7Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 8Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 9Page - National Semiconductor (TI) LM2651MTC-2.5 Datasheet HTML 10Page - National Semiconductor (TI)  
Zoom Inzoom in Zoom Outzoom out
 9 / 10 page
background image
Design Procedure (Continued)
Select resistors between 10k
Ω and 100kΩ.(1% or higher ac-
curacy metal film resistors for R
1 and R2.)
COMPENSATION COMPONENTS
In the control to output transfer function, the first pole F
p1 can
be estimated as 1/(2
πR
OUTCOUT); The ESR zero Fz1 of the
output capacitor is 1/(2
πESRC
OUT); Also, there is a high fre-
quency pole F
p2 in the range of 45kHz to 150kHz:
F
p2 = Fs/(πn(1−D))
where D = V
OUT/VIN,n = 1+0.348L/(VIN−VOUT)(L isinµHs
and V
IN and VOUT in volts).
The total loop gain G is approximately 500/I
OUT where IOUT
is in amperes.
A Gm amplifier is used inside the LM2651. The output resis-
tor R
o of the Gm amplifier is about 80kΩ.Cc1 and RC to-
gether with R
o give a lag compensation to roll off the gain:
F
pc1 = 1/(2πCc1(Ro+Rc)), Fzc1 = 1/2πCc1Rc.
In some applications, the ESR zero F
z1 can not be cancelled
by F
p2. Then, Cc2 is needed to introduce Fpc2 to cancel the
ESR zero, F
p2 = 1/(2πCc2Ro\Rc).
The rule of thumb is to have more than 45˚ phase margin at
the crossover frequency (G=1).
If C
OUT is higher than 68µF, Cc1 = 2.2nF, and Rc = 15KΩ are
good choices for most applications. If the ESR zero is too
low to be cancelled by F
p2, add Cc2.
If the transient response to a step load is important, choose
R
C to be higher than 10kΩ.
EXTERNAL SCHOTTKY DIODE
A Schottky diode D
1 is recommended to prevent the intrinsic
body diode of the low-side MOSFET from conducting during
the deadtime in PWM operation and hysteretic mode when
both MOSFETs are off. If the body diode turns on, there is
extra power dissipation in the body diode because of the
reverse-recovery current and higher forward voltage; the
high-side MOSFET also has more switching loss since the
negative diode reverse-recovery current appears as the
high-side MOSFET turn-on current in addition to the load
current. These losses degrade the efficiency by 1-2%. The
improved efficiency and noise immunity with the Schottky di-
ode become more obvious with increasing input voltage and
load current.
The breakdown voltage rating of D
1 is preferred to be 25%
higher than the maximum input voltage. Since D
1 is only on
for a short period of time, the average current rating for D
1
only requires being higher than 30% of the maximum output
current. It is important to place D
1 very close to the drain and
source of the low-side MOSFET, extra parasitic inductance
in the parallel loop will slow the turn-on of D
1 and direct the
current through the body diode of the low-side MOSFET.
When an undervoltage situation occurs, the output voltage
can be pulled below ground as the inductor current is re-
versed through the synchronous FET. For applications which
need to be protected from a negative voltage, a clamping di-
ode D2 is recommended. When used, D2 should be con-
nected cathode to V
OUT and anode to ground. A diode rated
for a minimum of 2A is recommended.
PCB Layout Considerations
Layout is critical to reduce noises and ensure specified per-
formance. The important guidelines are listed as follows:
1.
Minimize the parasitic inductance in the loop of input ca-
pacitors and the internal MOSFETs by connecting the in-
put capacitors to V
IN and PGND pins with short and wide
traces. This is important because the rapidly switching
current, together with wiring inductance can generate
large voltage spikes that may result in noise problems.
2.
Minimize the trace from the center of the output resistor
divider to the FB pin and keep it away from noise
sources to avoid noise pick up. For applications requir-
ing tight regulation at the output, a dedicated sense
trace (separated from the power trace) is recommended
to connect the top of the resistor divider to the output.
3.
If the Schottky diode D
1 is used, minimize the traces
connecting D
1 to SW and PGND pins.
DS100925-23
Schematic for the Typical Board Layout
www.national.com
9


Número de pieza similar - LM2651MTC-2.5

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
National Semiconductor ...
LM2651MTC-2.5 NSC-LM2651MTC-2.5 Datasheet
630Kb / 11P
   1.5A High Efficiency Synchronous Switching Regulator
More results

Descripción similar - LM2651MTC-2.5

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
National Semiconductor ...
LM2651 NSC-LM2651_05 Datasheet
630Kb / 11P
   1.5A High Efficiency Synchronous Switching Regulator
logo
Texas Instruments
LM2651 TI1-LM2651_14 Datasheet
966Kb / 20P
[Old version datasheet]   1.5A High Efficiency Synchronous Switching Regulator
logo
National Semiconductor ...
LM2653 NSC-LM2653 Datasheet
243Kb / 13P
   1.5A High Efficiency Synchronous Switching Regulator
LM2653 NSC-LM2653_05 Datasheet
663Kb / 12P
   1.5A High Efficiency Synchronous Switching Regulator
logo
Texas Instruments
LM2653MTCX-ADJ TI1-LM2653MTCX-ADJ Datasheet
1Mb / 20P
[Old version datasheet]   LM2653 1.5A High Efficiency Synchronous Switching Regulator
LM2651 TI-LM2651_15 Datasheet
946Kb / 19P
[Old version datasheet]   LM2651 1.5A High Efficiency Synchronous Switching Regulator
logo
National Semiconductor ...
LM2655 NSC-LM2655 Datasheet
377Kb / 16P
   2.5A High Efficiency Synchronous Switching Regulator
logo
Texas Instruments
LM2655 TI-LM2655_15 Datasheet
757Kb / 18P
[Old version datasheet]   2.5A High Efficiency Synchronous Switching Regulator
logo
National Semiconductor ...
LM2655 NSC-LM2655_05 Datasheet
769Kb / 16P
   2.5A High Efficiency Synchronous Switching Regulator
LM26001 NSC-LM26001_08 Datasheet
502Kb / 18P
   1.5A Switching Regulator with High Efficiency Sleep Mode
More results


Html Pages

1 2 3 4 5 6 7 8 9 10


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com