Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

LM76002-Q1 Datasheet(PDF) 28 Page - Texas Instruments

Click here to check the latest version.
No. de pieza LM76002-Q1
Descripción Electrónicos  3.5-V to 60-V, 2.5-A/3.5-A Synchronous Step-Down Voltage Regulator
Download  54 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  TI1 [Texas Instruments]
Página de inicio  http://www.ti.com
Logo TI1 - Texas Instruments

LM76002-Q1 Datasheet(HTML) 28 Page - Texas Instruments

Back Button LM76002-Q1 Datasheet HTML 24Page - Texas Instruments LM76002-Q1 Datasheet HTML 25Page - Texas Instruments LM76002-Q1 Datasheet HTML 26Page - Texas Instruments LM76002-Q1 Datasheet HTML 27Page - Texas Instruments LM76002-Q1 Datasheet HTML 28Page - Texas Instruments LM76002-Q1 Datasheet HTML 29Page - Texas Instruments LM76002-Q1 Datasheet HTML 30Page - Texas Instruments LM76002-Q1 Datasheet HTML 31Page - Texas Instruments LM76002-Q1 Datasheet HTML 32Page - Texas Instruments Next Button
Zoom Inzoom in Zoom Outzoom out
 28 / 54 page
background image
SW
OUT
D '
1
ESR <
+ 0.5
f
C
r
·
§
u ¨
¸
u
©
¹
2
OUT
SW
OUT
OUT
1
r
C
(1 D )
D
(1 r)
(f
r
V
/ I
)
12
ª
º
·
§
c
c
!
u
u
u
«
»
¸
¨¨
¸
u u '
«
»
©
¹
¬
¼
28
LM76002-Q1, LM76003-Q1
SNVSAU3 – DECEMBER 2017
www.ti.com
Product Folder Links: LM76002-Q1 LM76003-Q1
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
In general, it is preferable to choose lower inductance in switching power supplies, because it usually
corresponds to faster transient response, smaller DCR, and reduced size for more compact designs. However,
too low of an inductance can generate too large of an inductor current ripple such that overcurrent protection at
the full load could be falsely triggered. It also generates more conduction loss because the RMS current is
slightly higher relative that with lower current ripple at the same DC current. Larger inductor current ripple also
implies larger output voltage ripple with the same output capacitors. With peak-current-mode control, it is not
recommended to have an inductor current ripple that is too small. Enough inductor current ripple improves signal-
to-noise ratio on the current comparator and makes the control loop more immune to noise.
Once the inductance is determined, the type of inductor must be selected. Ferrite designs have very low core
losses and are preferred at high switching frequencies, so design goals can concentrate on copper loss and
preventing saturation. Ferrite core material saturates hard, which means that inductance collapses abruptly when
the peak design current is exceeded. The hard saturation results in an abrupt increase in inductor ripple current
and consequent output voltage ripple. Do not allow the core to saturate.
For the design example, a standard 10-μH inductor from Wurth, Coiltronics, or Vishay can be used for the 3.3-V
output with plenty of current rating margin.
8.2.2.6 Output Capacitor Selection
The device is designed to be used with a wide variety of LC filters. TI generally recommends using as little output
capacitance as possible to keep cost and size down. Choose the output capacitor(s), COUT, with care as it
directly affects the steady-state output-voltage ripple, loop stability, and the voltage over/undershoot during load
current transients.
The output voltage ripple is essentially composed of two parts. One is caused by the inductor current ripple going
through the equivalent series resistance (ESR) of the output capacitors:
ΔVOUT-ESR = ΔiL × ESR
(21)
The other is caused by the inductor current ripple charging and discharging the output capacitors:
ΔVOUT-C = ΔiL / (8 × fSW × COUT)
(22)
The two components in the voltage ripple are not in phase, so the actual peak-to-peak ripple is smaller than the
sum of the two peaks.
Output capacitance is usually limited by transient performance specifications if the system requires tight voltage
regulation in the presence of large current steps and fast slew rates. When a fast large load transient happens,
output capacitors provide the required charge before the inductor current can slew to the appropriate level. The
initial output voltage step is equal to the load current step multiplied by the ESR. VOUT continues to droop until
the control loop response increases or decreases the inductor current to supply the load. To maintain a small
overshoot or undershoot during a transient, small ESR, and large capacitance are desired. But these also come
with higher cost and size. Thus, the motivation is to seek a fast control loop response to reduce the output
voltage deviation.
For a given input and output requirement, Equation 23 gives an approximation for an absolute minimum output
cap required:
(23)
Along with this for the same requirement, calculate the maximum ESR as per Equation 24
where
r = Ripple ratio of the inductor ripple current (ΔiL / IOUT)
ΔVO = target output voltage undershoot
D’ = 1 – duty cycle
fSW = switching frequency
IOUT = load current
(24)


Número de pieza similar - LM76002-Q1

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Texas Instruments
LM76002 TI1-LM76002 Datasheet
1Mb / 53P
[Old version datasheet]   3.5-V to 60-V, 2.5-A/3.5-A Synchronous Step-Down Voltage Regulator
LM76002RNPR TI1-LM76002RNPR Datasheet
1Mb / 53P
[Old version datasheet]   3.5-V to 60-V, 2.5-A/3.5-A Synchronous Step-Down Voltage Regulator
LM76002RNPT TI1-LM76002RNPT Datasheet
1Mb / 53P
[Old version datasheet]   3.5-V to 60-V, 2.5-A/3.5-A Synchronous Step-Down Voltage Regulator
More results

Descripción similar - LM76002-Q1

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Texas Instruments
LM76002 TI1-LM76002 Datasheet
1Mb / 53P
[Old version datasheet]   3.5-V to 60-V, 2.5-A/3.5-A Synchronous Step-Down Voltage Regulator
LM46001-Q1 TI1-LM46001-Q1_17 Datasheet
2Mb / 55P
[Old version datasheet]   3.5-V to 60-V, 1 A Synchronous Step-Down Voltage Converter
LM46002-Q1 TI1-LM46002-Q1 Datasheet
2Mb / 60P
[Old version datasheet]   3.5-V to 60-V, 2-A, Synchronous Step-Down Voltage Converter
LM46000-Q1 TI1-LM46000-Q1 Datasheet
2Mb / 54P
[Old version datasheet]   3.5-V to 60-V, 0.5-A Synchronous Step-Down Voltage Converter
LM76005 TI1-LM76005 Datasheet
1Mb / 39P
[Old version datasheet]   LM76005 3.5-V to 60-V, 5-A Synchronous Step-Down Converter
LM46000-Q1 TI-LM46000-Q1_15 Datasheet
1Mb / 50P
[Old version datasheet]   SIMPLE SWITCHER 3.5 V to 60 V 0.5 A Synchronous Step-Down Voltage Converter
LM46002-Q1 TI-LM46002-Q1_15 Datasheet
1Mb / 52P
[Old version datasheet]   SIMPLE SWITCHER 3.5 V to 60 V 2 A Synchronous Step-Down Voltage Converter
LM46002 TI-LM46002_15 Datasheet
1Mb / 52P
[Old version datasheet]   SIMPLE SWITCHER 3.5 V to 60 V 2 A Synchronous Step-Down Voltage Converter
LM43600-Q1 TI1-LM43600-Q1_17 Datasheet
2Mb / 54P
[Old version datasheet]   3.5-V to 36-V, 0.5-A Synchronous Step-Down Voltage Converter
LM43601-Q1 TI1-LM43601-Q1 Datasheet
2Mb / 53P
[Old version datasheet]   3.5-V to 36-V, 1-A Synchronous Step-Down Voltage Converter
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com