Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

AD603AR-REEL7 Datasheet(PDF) 10 Page - Analog Devices

No. de pieza AD603AR-REEL7
Descripción Electrónicos  Low Noise, 90 MHz Variable-Gain Amplifier
Download  14 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  AD [Analog Devices]
Página de inicio  http://www.analog.com
Logo AD - Analog Devices

AD603AR-REEL7 Datasheet(HTML) 10 Page - Analog Devices

Back Button AD603AR-REEL7 Datasheet HTML 6Page - Analog Devices AD603AR-REEL7 Datasheet HTML 7Page - Analog Devices AD603AR-REEL7 Datasheet HTML 8Page - Analog Devices AD603AR-REEL7 Datasheet HTML 9Page - Analog Devices AD603AR-REEL7 Datasheet HTML 10Page - Analog Devices AD603AR-REEL7 Datasheet HTML 11Page - Analog Devices AD603AR-REEL7 Datasheet HTML 12Page - Analog Devices AD603AR-REEL7 Datasheet HTML 13Page - Analog Devices AD603AR-REEL7 Datasheet HTML 14Page - Analog Devices  
Zoom Inzoom in Zoom Outzoom out
 10 / 14 page
background image
REV. C
–10–
AD603
output signal. The automatic gain control voltage, VAGC, is the
time-integral of this error current. In order for VAGC (and thus
the gain) to remain insensitive to short-term amplitude fluctuations
in the output signal, the rectified current in Q1 must, on average,
exactly balance the current in Q2. If the output of A2 is too small
to do this, VAGC will increase, causing the gain to increase, until
Q1 conducts sufficiently.
Consider the case where R8 is zero and the output voltage VOUT
is a square wave at, say, 455 kHz, which is well above the corner
frequency of the control loop.
During the time VOUT is negative with respect to the base voltage
of Q1, Q1 conducts; when VOUT is positive, it is cut off. Since
the average collector current of Q1 is forced to be 300
µA, and
the square wave has a duty-cycle of 1:1, Q1’s collector current
when conducting must be 600
µA. With R8 omitted, the peak
amplitude of VOUT is forced to be just the VBE of Q1 at 600 µA,
typically about 700 mV, or 2 VBE peak-to-peak. This voltage,
hence the amplitude at which the output stabilizes, has a strong
negative temperature coefficient (TC), typically –1.7 mV/
°C.
Although this may not be troublesome in some applications, the
correct value of R8 will render the output stable with temperature.
To understand this, first note that the current in Q2 is made
to be proportional to absolute temperature (PTAT). For the
moment, continue to assume that the signal is a square wave.
When Q1 is conducting, VOUT is now the sum of VBE and a
voltage that is PTAT and which can be chosen to have an equal
but opposite TC to that of the VBE. This is actually nothing more
than an application of the “bandgap voltage reference” principle.
When R8 is chosen such that the sum of the voltage across it
and the VBE of Q1 is close to the bandgap voltage of about 1.2 V,
VOUT will be stable over a wide range of temperatures, provided,
of course, that Q1 and Q2 share the same thermal environment.
Since the average emitter current is 600
µA during each half-
cycle of the square wave a resistor of 833
Ω would add a PTAT
voltage of 500 mV at 300 K, increasing by 1.66 mV/
°C. In prac-
tice, the optimum value will depend on the type of transistor
used and, to a lesser extent, on the waveform for which the
temperature stability is to be optimized; for the inexpensive
2N3904/2N306 pair and sine wave signals, the recommended
value is 806
Ω.
This resistor also serves to lower the peak current in Q1 when
more typical signals (usually, sinusoidal) are involved, and the
1.8 kHz LP filter it forms with CAV helps to minimize distortion
due to ripple in VAGC. Note that the output amplitude under
sine wave conditions will be higher than for a square wave, since
the average value of the current for an ideal rectifier would be
0.637 times as large, causing the output amplitude to be
1.88 (=1.2/0.637) V, or 1.33 V rms. In practice, the somewhat
nonideal rectifier results in the sine wave output being regulated
to about 1.4 V rms, or 3.6 V p-p.
The bandwidth of the circuit exceeds 40 MHz. At 10.7 MHz,
the AGC threshold is 100
µV (–67 dBm) and its maximum gain
is 83 dB (20 log 1.4 V/100
µV). The circuit holds its output at
1.4 V rms for inputs as low as –67 dBm to +15 dBm (82 dB),
where the input signal exceeds the AD603’s maximum input
rating. For a 30 dBm input at 10.7 MHz, the second harmonic
is 34 dB down from the fundamental and the third harmonic is
35 dB down.
CAUTION
Careful component selection, circuit layout, power-supply
decoupling, and shielding are needed to minimize the AD603’s
susceptibility to interference from radio and TV stations, etc. In
bench evaluation, we recommend placing all of the components
in a shielded box and using feedthrough decoupling networks
for the supply voltage. Circuit layout and construction are also
critical, since stray capacitances and lead inductances can form
resonant circuits and are a potential source of circuit peaking,
oscillation, or both.


Número de pieza similar - AD603AR-REEL7

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
AD603AR-REEL7 AD-AD603AR-REEL7 Datasheet
605Kb / 20P
   Low Noise, 90 MHz Variable Gain Amplifier
Rev. G
AD603AR-REEL7 AD-AD603AR-REEL7 Datasheet
551Kb / 24P
   Low Noise, 90 MHz Variable Gain Amplifier
Rev. H
AD603AR-REEL7 AD-AD603AR-REEL7 Datasheet
815Kb / 25P
   Low Noise, 90 MHz Variable Gain Amplifier
More results

Descripción similar - AD603AR-REEL7

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
AD603 AD-AD603_05 Datasheet
605Kb / 20P
   Low Noise, 90 MHz Variable Gain Amplifier
Rev. G
AD603 AD-AD603_15 Datasheet
994Kb / 25P
   Low Noise, 90 MHz Variable Gain Amplifier
Rev. K
AD603 AD-AD603_07 Datasheet
551Kb / 24P
   Low Noise, 90 MHz Variable Gain Amplifier
Rev. H
AD603 AD-AD603_17 Datasheet
815Kb / 25P
   Low Noise, 90 MHz Variable Gain Amplifier
logo
DAICO Industries, Inc.
DAML6273 DAICO-DAML6273 Datasheet
176Kb / 1P
   Variable Gain Low Noise Amplifier
DAML6275 DAICO-DAML6275 Datasheet
157Kb / 1P
   Variable Gain Low Noise Amplifier
DAML6274 DAICO-DAML6274 Datasheet
156Kb / 1P
   Variable Gain Low Noise Amplifier
DAML6280 DAICO-DAML6280 Datasheet
183Kb / 1P
   Variable Gain Low Noise Amplifier
logo
United Monolithic Semic...
CHA2292 UMS-CHA2292_07 Datasheet
221Kb / 7P
   16-24GHz Low Noise, Variable Gain Amplifier
CHA2294 UMS-CHA2294_07 Datasheet
181Kb / 6P
   35-40GHz Low Noise, Variable Gain Amplifier
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com