Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

ADP3162JR Datasheet(PDF) 9 Page - Analog Devices

No. de pieza ADP3162JR
Descripción Electrónicos  5-Bit Programmable 2-Phase Synchronous Buck Controller
Download  12 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  AD [Analog Devices]
Página de inicio  http://www.analog.com
Logo AD - Analog Devices

ADP3162JR Datasheet(HTML) 9 Page - Analog Devices

Back Button ADP3162JR Datasheet HTML 4Page - Analog Devices ADP3162JR Datasheet HTML 5Page - Analog Devices ADP3162JR Datasheet HTML 6Page - Analog Devices ADP3162JR Datasheet HTML 7Page - Analog Devices ADP3162JR Datasheet HTML 8Page - Analog Devices ADP3162JR Datasheet HTML 9Page - Analog Devices ADP3162JR Datasheet HTML 10Page - Analog Devices ADP3162JR Datasheet HTML 11Page - Analog Devices ADP3162JR Datasheet HTML 12Page - Analog Devices  
Zoom Inzoom in Zoom Outzoom out
 9 / 12 page
background image
REV. A
ADP3162
–9–
R
V
VV
R
gV
V
R
V
VV
k
mmho
mV
k
B
REF
REF
GNL
T
m
ONL
OUT
B
=
−×
=
−×
=Ω
()
.
.
.
.
3
3
1 194
71
22
45
19 31
(11)
Choosing the nearest 1% resistor gives RB = 19.1 k
Ω. Finally,
RA is calculated:
R
RR
R
k
k
k
k
A
T
OGM
B
=
−−
=
=Ω
1
11
1
1
1
71
1
200
1
19 1
11 98
..
.
(12)
Choosing the nearest 1% resistor gives RA = 12.1 k
Ω.
COUT Selection
The required equivalent series resistance (ESR) and capacitance
drive the selection of the type and quantity of the output capaci-
tors. The ESR of the output filter capacitor bank must be equal
to or less than the specified output resistance (3.2 m
Ω) of the
voltage regulator. The capacitance must be large enough that
the voltage across the capacitor, which is the sum of the resistive
and capacitive voltage drops, does not moves below or above the
initial resistive step while the inductor current ramps up or
down to the value corresponding to the new load current.
One can use, for example, four SP-Type OS-CON capacitors
from Sanyo, with 820
µF capacitance, a 4 V voltage rating,
and 12 m
Ω ESR. The four capacitors have a maximum total
ESR of 3 m
Ω when connected in parallel. Another possibility is
the ZA series from Rubycon. The trade-off is size versus cost.
Eight 1000
µF capacitors would give an ESR of 3 mΩ. These
eight capacitors take up more space than four OS-CON capaci-
tors, but are significantly less expensive.
As long as the capacitance of the output capacitor is above a
critical value and the regulating loop is compensated with
Analog Devices’ proprietary compensation technique, ADOPT,
the actual value has no influence on the peak-to-peak deviation
of the output voltage to a full step change in the load current.
The critical capacitance can be calculated as follows:
C
I
RV
L
A
mV
H
mF
OUT CRIT
O
OUT
OFL
()
..
.
=
×
×
×
× µ
=
2
28
32
1755
1
2
249
(13)
The equivalent capacitance of the four OS-CON capacitors is
4
× 820 µF = 3.28 mF, and the equivalent capacitance of the
eight ZA series Rubycon capacitors is 8 mF. With both choices,
the total capacitance is safely above the critical value.
Feedback Loop Compensation Design for ADOPT
Optimized compensation of the ADP3162 allows the best pos-
sible containment of the peak-to-peak output voltage deviation.
The output current slew rate of any practical switching power
converter is inherently limited by the inductor to a value much
less than the slew rate of the load. Therefore, any sudden change of
load current will initially flow through the output capacitors,
and assuming that the capacitance of the output capacitor is
larger than the critical value defined by Equation 14, this will
produce a peak output voltage deviation equal to the ESR of the
output capacitor times the load current change.
The optimal implementation of voltage positioning, ADOPT,
will create an output impedance of the power converter that is
entirely resistive over the widest possible frequency range—
including dc—and equal to the specified dc output resistance.
With the wide-band resistive output impedance the output
voltage will droop in proportion with the load current at any
load current slew rate; this ensures the optimal positioning and
allows the minimization of the output capacitor.
With an ideal current-mode controlled converter, where the
inductor current would respond without delay to the command
signal, the resistive output impedance could be achieved by having
a single-pole roll-off of the voltage gain of the voltage-error
amplifier. The pole frequency must coincide with the ESR zero
of the output capacitor. The ADP3162 uses constant-frequency
peak-current control, which is known to have a nonideal, frequency
dependent command-signal-to-inductor-current transfer func-
tion. The frequency dependence manifests in the form of a pair
of complex conjugate poles at one-half of the switching frequency.
A purely resistive output impedance could be achieved by can-
celing the complex conjugate with zeros at the same complex
frequencies and adding a third pole equal to the ESR zero of the
output capacitor. Such a compensating network would be quite
complicated. Fortunately, in practice it is sufficient to cancel the
pair of complex conjugate poles with a single real zero placed at
one-half of the switching frequency. Although the end result is
not a perfectly resistive output impedance, the remaining fre-
quency dependence causes only a few percentage of deviation
from the ideal resistive response. The single-pole and single-zero
compensation can be easily implemented by terminating the gm
error amplifier with the parallel combination of a resistor (RT)
and a series RC network. The value of the terminating resistor
RT was determined previously; the capacitance and resistance of
the series RC network are calculated as follows:
C
CR
Rf
R
OC
OUT
OUT
T
OSC
T
=
×
××
2
π
(14)
For the Rubycon output capacitors, the compensating capaci-
tor is:
C
mF
m
k
kHz
k
nF
OC =
×Ω
××
=
83
71
2
400
7 1
316
..
.
π
The closest standard value is 3.3 nF.
R
C
f
nF
kHz
Z
OC
OSC
=
××
=
××
=Ω
22
3 3
400
483
ππ
.
(15)
The nearest standard 5% resistor value is 470
Ω. Note that this
resistor is only required when COUT approaches CCRIT (within
25% or less). In this example COUT >> CCRIT, and RZ can there-
fore be omitted.
Power MOSFETs
In the standard two-phase application two pairs of N-channel
power MOSFETs must be used with the ADP3162 and ADP3412,
one pair as the main (control) switches, and the other pair as
the synchronous rectifier switches. The main selection parameters
for the power MOSFETs are VGS(TH) and RDS(ON). The mini-
mum gate drive voltage (the supply voltage to the ADP3412)


Número de pieza similar - ADP3162JR

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
ADP3160 AD-ADP3160 Datasheet
292Kb / 16P
   5-Bit Programmable 2-Phase Synchronous Buck Controller
REV. B
ADP3160JR AD-ADP3160JR Datasheet
292Kb / 16P
   5-Bit Programmable 2-Phase Synchronous Buck Controller
REV. B
ADP3161 AD-ADP3161 Datasheet
164Kb / 12P
   4-Bit Programmable 2-Phase Synchronous Buck Controller
REV. 0
ADP3161JR AD-ADP3161JR Datasheet
164Kb / 12P
   4-Bit Programmable 2-Phase Synchronous Buck Controller
REV. 0
ADP3163 AD-ADP3163 Datasheet
138Kb / 16P
   5-Bit Programmable 2-/3-Phase Synchronous Buck Controller
REV. 0
More results

Descripción similar - ADP3162JR

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
ADP3160 AD-ADP3160 Datasheet
292Kb / 16P
   5-Bit Programmable 2-Phase Synchronous Buck Controller
REV. B
ADP3163 AD-ADP3163 Datasheet
138Kb / 16P
   5-Bit Programmable 2-/3-Phase Synchronous Buck Controller
REV. 0
ADP3163JRUZ-REEL AD-ADP3163JRUZ-REEL Datasheet
138Kb / 16P
   5-Bit Programmable 2-/3-Phase Synchronous Buck Controller
REV. 0
logo
Fairchild Semiconductor
FAN5029 FAIRCHILD-FAN5029_07 Datasheet
139Kb / 3P
   8-Bit Programmable 2- to 5-Phase Synchronous Buck Controller
FAN5029 FAIRCHILD-FAN5029 Datasheet
443Kb / 3P
   8-Bit Programmable 2- to 5-Phase Synchronous Buck Controller
logo
Analog Devices
ADP3189 AD-ADP3189 Datasheet
1Mb / 36P
   8-Bit Programmable 2- to 5-Phase Synchronous Buck Controller
REV. 0
ADP3166 AD-ADP3166 Datasheet
351Kb / 20P
   5-Bit Programmable 2-, 3-, 4-Phase Synchronous Buck Controller
REV. 0
ADP3186 AD-ADP3186 Datasheet
618Kb / 24P
   5-Bit Programmable 2-/3-/4-Phase Synchronous Buck Controller
REV. A
ADP3164 AD-ADP3164 Datasheet
162Kb / 16P
   5-Bit Programmable 4-Phase Synchronous Buck Controller
REV. 0
logo
ON Semiconductor
ADP3209CJCPZ-RL ONSEMI-ADP3209CJCPZ-RL Datasheet
752Kb / 32P
   5-Bit, Programmable, Single-Phase, Synchronous Buck Controller
Jan2008 Rev. 2 ADP3209/D
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com