Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

FAN2502S25X Datasheet(PDF) 4 Page - Fairchild Semiconductor

No. de pieza FAN2502S25X
Descripción Electrónicos  150 mA CMOS LDO Regulators
Download  10 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  FAIRCHILD [Fairchild Semiconductor]
Página de inicio  http://www.fairchildsemi.com
Logo FAIRCHILD - Fairchild Semiconductor

FAN2502S25X Datasheet(HTML) 4 Page - Fairchild Semiconductor

  FAN2502S25X Datasheet HTML 1Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 2Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 3Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 4Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 5Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 6Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 7Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 8Page - Fairchild Semiconductor FAN2502S25X Datasheet HTML 9Page - Fairchild Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 4 / 10 page
background image
PRODUCT SPECIFICATION
FAN2502/FAN2503
4
REV. 1.1.7 2/14/03
Thermal Characteristics
The FAN2502/03 is designed to supply 150mA at the
specified output voltage with an operating die (junction)
temperature of up to 125°C. Once the power dissipation and
thermal resistance is known, the maximum junction
temperature of the device can be calculated. While the power
dissipation is calculated from known electrical parameters,
the thermal resistance is a result of the thermal characteris-
tics of the compact SOT23-5 surface-mount package and the
surrounding PC Board copper to which it is mounted.
The power dissipation is equal to the product of the input-to-
output voltage differential and the output current plus the
ground current multiplied by the input voltage, or:
The ground pin current IGND can be found in the charts
provided in the Electrical Characteristics section.
The relationship describing the thermal behavior of the
package is:
where TJ(max) is the maximum allowable junction tempera-
ture of the die, which is 125°C, and TA is the ambient operat-
ing temperature.
θ
JA is dependent on the surrounding PC
board layout and can be empirically obtained. While the
θ
JC
(junction-to-case) of the SOT23-5 package is specified at
130°C /W, the
θ
JA of the minimum PWB footprint will be at
least 235°C /W. This can be improved upon by providing a
heat sink of surrounding copper ground on the PWB.
Depending on the size of the copper area, the resulting
θ
JA
can range from approximately 180°C /W for one square inch
to nearly 130°C /W for 4 square inches. The addition of
backside copper with through-holes, stiffeners, and other
enhancements can also aid in reducing this value. The heat
contributed by the dissipation of other devices located
nearby must be included in design considerations.
Once the limiting parameters in these two relationships have
been determined, the design can be modified to ensure that
the device remains within specified operating conditions.
If overload conditions are not considered, it is possible for
the device to enter a thermal cycling loop, in which the
circuit enters a shutdown condition, cools, re-enables, and
then again overheats and shuts down repeatedly due to an
unmanaged fault condition.
Operation of Adjustable Version
The adjustable version of the FAN2502/03 includes an input
pin ADJ which allows the user to select an output voltage
ranging from 1.5V to near VIN, using an external resistor
divider. The voltage VADJ presented to the ADJ pin is fed to
the onboard error amplifier which adjusts the output voltage
until VADJ is equal to the onboard bandgap reference voltage
of 1.32V(typ). The equation is:
The total value of the resistor chain should not exceed
250K
Ω total to keep the error amplifier biased during
no-load conditions. Programming output voltages very near
VIN need to allow for the magnitude and variation of the
dropout voltage VDO over load, supply, and temperature
variations. Note that the low-leakage FET input to the
CMOS Error Amplifier induces no bias current error to the
calculation.
General PWB Layout Considerations
To achieve the full performance of the device, careful circuit
layout and grounding technique must be observed. Establish-
ing a small local ground, to which the GND pin, the output
and bypass capacitors are connected, is recommended, while
the input capacitor should be grounded to the main ground
plane. The quiet local ground is then routed back to the main
ground plane using feedthrough vias. In general, the high-
frequency compensation components (input, bypass, and
output capacitors) should be located as close to the device as
possible. The proximity of the output capacitor is especially
important to achieve optimal noise compensation from the
onboard error amplifier, especially during high load condi-
tions. A large copper area in the local ground will provide the
heat sinking discussed above when high power dissipation
significantly increases the temperature of the device.
Component-side copper provides significantly better thermal
performance for this surface-mount device, compared to that
obtained when using only copper planes on the underside.
P
D
V
IN
V
OUT
()I
OUT
V
INIGND
+
=
P
D max
()
T
J max
() TA
θ
JA
-------------------------------



=
V
OUT
1.32V
1
R
upper
R
lower
----------------
+
×
=


Número de pieza similar - FAN2502S25X

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
ON Semiconductor
FAN2502S25X ONSEMI-FAN2502S25X Datasheet
972Kb / 14P
   150 mA CMOS LDO Regulator
May 2013 Rev. 1.1.0
More results

Descripción similar - FAN2502S25X

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Fairchild Semiconductor
FAN2502 FAIRCHILD-FAN2502_10 Datasheet
264Kb / 10P
   150 mA CMOS LDO Regulators
FAN2512 FAIRCHILD-FAN2512 Datasheet
295Kb / 10P
   150 mA CMOS LDO Regulators with Fast Start Enable
FAN2512 FAIRCHILD-FAN2512_10 Datasheet
305Kb / 10P
   150 mA CMOS LDO Regulators with Fast Start Enable
logo
ON Semiconductor
NCV8502 ONSEMI-NCV8502_08 Datasheet
174Kb / 14P
   Micropower 150 mA LDO Linear Regulators
October, 2008 ??Rev. 31
NCV8501 ONSEMI-NCV8501_09 Datasheet
184Kb / 16P
   Micropower 150 mA LDO Linear Regulators
January, 2009 ??Rev. 29
logo
Fairchild Semiconductor
FAN2504 FAIRCHILD-FAN2504 Datasheet
252Kb / 10P
   200 mA CMOS LDO Regulators
logo
ON Semiconductor
CAT6217 ONSEMI-CAT6217 Datasheet
165Kb / 9P
   150 mA CMOS LDO Regulator
December, 2009 ??Rev. 5
logo
Fairchild Semiconductor
FAN2500 FAIRCHILD-FAN2500 Datasheet
251Kb / 10P
   100 mA CMOS LDO Regulators
FAN2508S28X FAIRCHILD-FAN2508S28X Datasheet
256Kb / 10P
   50 mA CMOS LDO Regulators
FAN2500 FAIRCHILD-FAN2500_10 Datasheet
499Kb / 10P
   100 mA CMOS LDO Regulators
More results


Html Pages

1 2 3 4 5 6 7 8 9 10


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com