Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

AD7896AN Datasheet(PDF) 10 Page - Analog Devices

No. de pieza AD7896AN
Descripción Electrónicos  2.7 V to 5.5 V, 12-Bit, 8 s ADC in 8-Lead SOIC/PDIP
Download  15 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  AD [Analog Devices]
Página de inicio  http://www.analog.com
Logo AD - Analog Devices

AD7896AN Datasheet(HTML) 10 Page - Analog Devices

Back Button AD7896AN Datasheet HTML 6Page - Analog Devices AD7896AN Datasheet HTML 7Page - Analog Devices AD7896AN Datasheet HTML 8Page - Analog Devices AD7896AN Datasheet HTML 9Page - Analog Devices AD7896AN Datasheet HTML 10Page - Analog Devices AD7896AN Datasheet HTML 11Page - Analog Devices AD7896AN Datasheet HTML 12Page - Analog Devices AD7896AN Datasheet HTML 13Page - Analog Devices AD7896AN Datasheet HTML 14Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 15 page
background image
–10–
AD7896
The BUSY line can be connected to the
IRQ line of the
68HC11/L11 if an interrupt driven system is preferred. These
two options are shown in the diagram.
The serial clock rate from the 68HC11/L11 is limited to signifi-
cantly less than the allowable input serial clock frequency with
which the AD7896 can operate. As a result, the time to read
data from the part will actually be longer than the conversion
time of the part. This means that the AD7896 cannot run at its
maximum throughput rate when used with the 68HC11/L11.
SDATA
BUSY
SCK
MISO
SCLK
PC2 OR
IRQ
68HC11/L11
AD7896
Figure 6. AD7896 to 68HC11/L11 Interface
To chip select the AD7896 in systems where more than one
device is connected to the 8X51/L51 serial port, a port bit,
configured as an output, from one of the 8X51/L51 parallel
ports can be used to gate on or off the serial clock to the AD7896.
A simple AND function on this port bit and the serial clock from
the 8X51/L51 will provide this function. The port bit should be
high to select the AD7896 and low when it is not selected.
The end of conversion is monitored by using the BUSY signal,
which is shown in the interface diagram of Figure 5, with the
BUSY line from the AD7896 connected to the Port P1.2 of the
8X51/L51 so the BUSY line can be polled by the 8X51/L51.
The BUSY line can be connected to the INT1 line of the
8X51/L51 if an interrupt driven system is preferred. These two
options are shown on the diagram.
Note also that the AD7896 outputs the MSB first during a read
operation while the 8X51/L51 expects the LSB first. Therefore,
the data that is read into the serial buffer needs to be rearranged
before the correct data format from the AD7896 appears in the
accumulator.
The serial clock rate from the 8X51/L51 is limited to signifi-
cantly less than the allowable input serial clock frequency with
which the AD7896 can operate. As a result, the time to read
data from the part will actually be longer than the conversion
time of the part. This means that the AD7896 cannot run at its
maximum throughput rate when used with the 8X51/L51.
SCLK
BUSY
P3.0
P3.1
8X51/L51
AD7896
SDATA
P1.2
OR
INT1
Figure 5. AD7896 to 8X51/L51 Interface
AD7896–68HC11/L11 Interface
An interface circuit between the AD7896 and the 68HC11/L11
microcontroller is shown in Figure 6. For the interface shown,
the 68HC11/L11 SPI port is used and the 68HC11/L11 is con-
figured in its single-chip mode. The 68HC11/L11 is configured
in the master mode with its CPOL bit set to a Logic 0 and its
CPHA bit set to a Logic 1. As with the previous interface, the
diagram shows the simplest form of the interface, where the
AD7896 is the only part connected to the serial port of the
68HC11/L11 and, therefore, no decoding of the serial read
operations is required.
Once again, to chip select the AD7896 in systems where more
than one device is connected to the 68HC11/L11 serial port, a
port bit, configured as an output, from one of the 68HC11/L11
parallel ports can be used to gate on or off the serial clock to the
AD7896. A simple AND function on this port bit and the serial
clock from the 68HC11/L11 will provide this function. The port
bit should be high to select the AD7896 and low when it is
not selected.
The end of conversion is monitored by using the BUSY signal
which is shown in the interface diagram of Figure 6. With the
BUSY line from the AD7896 connected to the Port PC2 of the
68HC11/L11, the BUSY line can be polled by the 68HC11/L11.
Rev. D
AD7896–ADSP-2105 Interface
An interface circuit between the AD7896 and the ADSP-2105 DSP
processor is shown in Figure 7. In the interface shown, the RFS1
output from the ADSP-2105s SPORT1 serial port is used to gate
the serial clock (SCLK1) of the ADSP-2105 before it is applied to
the SCLK input of the AD7896. The RFS1 output is configured for
active high operation. The BUSY line from the AD7896 is
connected to the IRQ2 line of the ADSP-2105 so that at the end of
conversion an interrupt is generated telling the ADSP-2105 to
initiate a read operation. The interface ensures a noncontinuous
clock for the AD7896’s serial clock input, with only 16 serial clock
pulses provided and the serial clock line of the AD7896 remaining
low between data transfers. The SDATA line from the AD7896 is
connected to the DR1 line of the ADSP-2105 serial port.
The timing relationship between the SCLK1 and RFS1 outputs of the
ADSP-2105 are such that the delay between the rising edge of the
SCLK1 and the rising edge of an active high RFS1 is up to 30 ns.
There is also a requirement that data must be set up 10 ns prior to the
falling edge of the SCLK1 to be read correctly by the ADSP-2105.
The data access time for the AD7896 is 60 ns (5 V [A, B versions])
from the rising edge of its SCLK input. Assuming a 10 ns propa-
gation delay through the external AND gate, the high time of the
SCLK1 output of the ADSP-2105 must be ≥ (30 + 60 + 10 + 10) ns,
i.e., ≥110 ns. This means that the serial clock frequency with which
the interface of Figure 7 can work is limited to 4.5 MHz. However,
there is an alternative method that allows for the ADSP-2105 SCLK1
to run at 5 MHz (which is the max serial clock frequency of the
SCLK1 output). The arrangement is where the first leading zero of the
data stream from the AD7896 cannot be guaranteed to be clocked into
the ADSP-2105 due to the combined delay of the RFS signal and the
data access time of the AD7896. In most cases, this is acceptable as
there will still be three leading zeros followed by the 12 data bits.


Número de pieza similar - AD7896AN

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
AD7896AN AD-AD7896AN Datasheet
367Kb / 12P
   2.7 V to 5.5 V, 12-Bit, 8 us ADC in 8-Pin SO/DIP
REV. B
AD7896AN AD-AD7896AN Datasheet
1Mb / 16P
   2.7 V to 5.5 V, 12-Bit ADC in 8-Lead SOIC/PDIP
AD7896ANZ AD-AD7896ANZ Datasheet
1Mb / 15P
   2.7 V to 5.5 V, 12-Bit, 8 s ADC in 8-Lead SOIC/PDIP
REV. D
AD7896ANZ AD-AD7896ANZ Datasheet
1Mb / 16P
   2.7 V to 5.5 V, 12-Bit ADC in 8-Lead SOIC/PDIP
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com