Motor de Búsqueda de Datasheet de Componentes Electrónicos
  Spanish  ▼
ALLDATASHEET.ES

X  

AD767JNZ Datasheet(PDF) 4 Page - Analog Devices

No. de pieza AD767JNZ
Descripción Electrónicos  Microprocessor-Compatible 12-Bit D/A Converter
Download  8 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrónico  AD [Analog Devices]
Página de inicio  http://www.analog.com
Logo AD - Analog Devices

AD767JNZ Datasheet(HTML) 4 Page - Analog Devices

  AD767JNZ Datasheet HTML 1Page - Analog Devices AD767JNZ Datasheet HTML 2Page - Analog Devices AD767JNZ Datasheet HTML 3Page - Analog Devices AD767JNZ Datasheet HTML 4Page - Analog Devices AD767JNZ Datasheet HTML 5Page - Analog Devices AD767JNZ Datasheet HTML 6Page - Analog Devices AD767JNZ Datasheet HTML 7Page - Analog Devices AD767JNZ Datasheet HTML 8Page - Analog Devices  
Zoom Inzoom in Zoom Outzoom out
 4 / 8 page
background image
AD767
REV. A
–4–
THE AD767 OFFERS TRUE 12-BIT PERFORMANCE
OVER THE FULL TEMPERATURE RANGE
LINEARITY ERROR: Analog Devices defines linearity error as
the maximum deviation of the actual, adjusted DAC output
from the ideal analog output (a straight line drawn from 0 to
F.S. – 1 LSB) for any bit combination. This is also referred to as
relative accuracy. The AD767 is laser trimmed to typically
maintain linearity errors at less than
±1/8 LSB for the K and B
versions and
±1/2 LSB for the J, A and S versions. Linearity
over temperature is also held to
±1/2 LSB (K/B) or ±1 LSB
(J/A/S).
MONOTONICITY: A DAC is said to be monotonic if the
output either increases or remains constant for increasing digital
inputs such that the output will always be a nondecreasing
function of input. All versions of the AD767 are monotonic over
their full operating temperature range.
DIFFERENTIAL NONLINEARITY: Monotonic behavior
requires that the differential linearity error be less than 1 LSB
both at +25
°C as well as over the temperature range of interest.
Differential nonlinearity is the measure of the variation in analog
value, normalized to full scale, associated with a 1 LSB change
in digital input code. For example, for a 10 volt full-scale
output, a change of 1 LSB in digital input code should result in
a 2.44 mV change in the analog output (1 LSB = 10 V
1/4096 = 2.44 mV). If in actual use, however, a 1 LSB change
in the input code results in a change of only 0.61 mV (1/4 LSB)
in analog output, the differential nonlinearity error would be
–1.83 mV, or –3/4 LSB.
GAIN ERROR: DAC gain error is a measure of the difference
between an ideal DAC and the actual device’s output span. All
grades of the AD767 have a maximum gain error of 0.2% FS.
However, if this is not sufficient, the error can easily be adjusted
to zero (see Figures 2 and 3).
UNIPOLAR OFFSET ERROR: Unipolar offset error is a
combination of the offset errors of the voltage-mode DAC and
the output amplifier and is measured when the AD767 is
configured for unipolar outputs. It is present for all codes and is
measured with all “0s” in the DAC latches. This is easily
adjustable to zero when required.
BIPOLAR ZERO ERROR: Bipolar zero errors result from
errors produced by the DAC and output amplifier when the
AD767 is configured for bipolar output. Again, as with unipolar
offset and gain errors, this is easily adjusted to zero when
required.
ANALOG CIRCUIT CONNECTIONS
Internal scaling resistors provided in the AD767 may be connected
to produce bipolar output voltage ranges of
±10, ±5 or ±2.5 V
or unipolar output voltage ranges of 0 to +5 V or 0 to +10 V.
Gain and offset drift are minimized in the AD767 because of the
thermal tracking of the scaling resistors with other device
components. Connections for various output voltage ranges are
shown in Table I.
Figure 1. Output Amplifier Voltage Range Scaling Circuit
UNIPOLAR CONFIGURATION (Figure 2)
This configuration will provide a unipolar 0 to +10 volt output
range. In this mode, the bipolar offset terminal, Pin 4, should be
grounded if not used for trimming.
STEP I … ZERO ADJUST
Turn all bits OFF and adjust zero trimmer R1, until the output
reads 0.000 volts (1 LSB = 2.44 mV). In most cases this trim is
not needed, and Pin 4 should be connected to Pin 5.
STEP II … GAIN ADJUST
Turn all bits ON and adjust 100
Ω gain trimmer R2 until the
output is 9.9976 volts. (Full scale is adjusted to 1 LSB less than
nominal full scale of 10.000 volts.)
Figure 2. 0 to +10 V Unipolar Voltage Output
Table I. Output Voltage Range Connections
Output
Digital
Connect
Connect
Connect
Connect
Range
Input Codes
Pin 9 to
Pin 1 to
Pin 2 to
Pin 4 to
±10 V
Offset Binary
1
9
NC
6 (through 50
Ω fixed or 100 Ω trim resistor)
±5 V
Offset Binary
1 and 2
2 and 9
1 and 9
6 (through 50
Ω fixed or 100 Ω trim resistor)
±2.5 V
Offset Binary
2
3
9
6 (through 50
Ω fixed or 100 Ω trim resistor)
0 to +10 V
Straight Binary
1 and 2
2 and 9
1 and 9
5 (or optional trim – See Figure 2)
0 to +5 V
Straight Binary
2
3
9
5 (or optional trim – See Figure 2)


Número de pieza similar - AD767JNZ

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
AD767JN AD-AD767JN Datasheet
289Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD767JN AD-AD767JN Datasheet
627Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD767JN AD-AD767JN Datasheet
627Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD767JN AD-AD767JN Datasheet
627Kb / 8P
   Microprocessor - Compatible 12-Bit D/A Comverter
REV. A
More results

Descripción similar - AD767JNZ

Fabricante ElectrónicoNo. de piezaDatasheetDescripción Electrónicos
logo
Analog Devices
AD667SE-883B AD-AD667SE-883B Datasheet
759Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD767JPZ AD-AD767JPZ Datasheet
627Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD667SD AD-AD667SD Datasheet
759Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD767 AD-AD767 Datasheet
289Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
logo
Intersil Corporation
ICL7109 INTERSIL-ICL7109 Datasheet
962Kb / 25P
   12-Bit, Microprocessor- Compatible A/D Converter
logo
Analog Devices
AD767KNZ AD-AD767KNZ Datasheet
627Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD567SD AD-AD567SD Datasheet
7Mb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
AD667JNZ AD-AD667JNZ Datasheet
759Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
AD667 AD-AD667_15 Datasheet
759Kb / 8P
   Microprocessor Compatible 12 bit D/A Converter
REV. A
AD667 AD-AD667 Datasheet
327Kb / 8P
   Microprocessor-Compatible 12-Bit D/A Converter
REV. A
More results


Html Pages

1 2 3 4 5 6 7 8


Datasheet Descarga

Go To PDF Page


Enlace URL




Política de Privacidad
ALLDATASHEET.ES
¿ALLDATASHEET es útil para Ud.?  [ DONATE ] 

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com