Motor de Búsqueda de Datasheet de Componentes Electrónicos
Selected language     Spanish  ▼

Delete All
ON OFF
ALLDATASHEET.ES

X  

Preview PDF Download HTML

MMFT107T1 Datasheet(PDF) 6 Page - ON Semiconductor

No. de Pieza. MMFT107T1
Descripción  Power MOSFET 250 mA, 200 Volts
Descarga  8 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Fabricante  ONSEMI [ON Semiconductor]
Página de inicio  http://www.onsemi.com
Logo 

MMFT107T1 Datasheet(HTML) 6 Page - ON Semiconductor

   
Zoom Inzoom in Zoom Outzoom out
 6 / 8 page
background image
MMFT107T1
http://onsemi.com
6
TYPICAL SOLDER HEATING PROFILE
For any given circuit board, there will be a group of
control settings that will give the desired heat pattern. The
operator must set temperatures for several heating zones,
and a figure for belt speed. Taken together, these control
settings make up a heating “profile” for that particular
circuit board. On machines controlled by a computer, the
computer remembers these profiles from one operating
session to the next. Figure 10 shows a typical heating
profile for use when soldering a surface mount device to a
printed circuit board. This profile will vary among
soldering systems but it is a good starting point. Factors that
can affect the profile include the type of soldering system in
use, density and types of components on the board, type of
solder used, and the type of board or substrate material
being used. This profile shows temperature versus time.
The line on the graph shows the actual temperature that
might be experienced on the surface of a test board at or
near a central solder joint. The two profiles are based on a
high density and a low density board. The Vitronics
SMD310 convection/infrared reflow soldering system was
used to generate this profile. The type of solder used was
62/36/2 Tin Lead Silver with a melting point between
177–189
°C. When this type of furnace is used for solder
reflow work, the circuit boards and solder joints tend to
heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then
distributes this energy to the components. Because of this
effect, the main body of a component may be up to 30
degrees cooler than the adjacent solder joints.
STEP 1
PREHEAT
ZONE 1
“RAMP”
STEP 2
VENT
“SOAK”
STEP 3
HEATING
ZONES 2 & 5
“RAMP”
STEP 4
HEATING
ZONES 3 & 6
“SOAK”
STEP 5
HEATING
ZONES 4 & 7
“SPIKE”
STEP 6
VENT
STEP 7
COOLING
200
°C
150
°C
100
°C
5
°C
TIME (3 TO 7 MINUTES TOTAL)
TMAX
SOLDER IS LIQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLY)
205
° TO 219°C
PEAK AT
SOLDER
JOINT
DESIRED CURVE FOR LOW
MASS ASSEMBLIES
DESIRED CURVE FOR HIGH
MASS ASSEMBLIES
100
°C
150
°C
160
°C
170
°C
140
°C
Figure 10. Typical Solder Heating Profile


Html Pages

1  2  3  4  5  6  7  8 


Datasheet Download




Enlace URL




Privacy Policy
ALLDATASHEET.ES
Does ALLDATASHEET help your business so far?  [ DONATE ]  

Todo acerca de Alldatasheet   |   Publicidad   |   Contáctenos   |   Política de Privacidad   |   Favorito   |   Intercambio de Enlaces   |   Lista de Fabricantes
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn